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Abstract
Generative Retrieval introduces a new approach to Information
Retrieval by reframing it as a constrained generation task, leverag-
ing recent advancements in Autoregressive (AR) language models.
However, AR-based Generative Retrieval methods suffer from high
inference latency and cost compared to traditional dense retrieval
techniques, limiting their practical applicability. This paper investi-
gates fully Non-autoregressive (NAR) language models as a more
efficient alternative for generative retrieval. While standard NAR
models alleviate latency and cost concerns, they exhibit a signifi-
cant drop in retrieval performance (compared to AR models) due
to their inability to capture dependencies between target tokens.
To address this, we question the conventional choice of limiting
the target token space to solely words or sub-words. We propose
PIXNAR, a novel approach that expands the target vocabulary of
NAR models to include multi-word entities and common phrases
(up to 5 million tokens), thereby reducing token dependencies. PIX-
NAR employs inference optimization strategies to maintain low
inference latency despite the significantly larger vocabulary. Our
results demonstrate that PIXNAR achieves a relative improvement
of 31.0% in MRR@10 on MS MARCO and 23.2% in Hits@5 on Nat-
ural Questions compared to standard NAR models with similar
latency and cost. Furthermore, online A/B experiments on a large
commercial search engine show significant increase in clicks and
revenue. 1
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1 Introduction
Generative Retrieval (GR) has emerged as a promising approach
within Information Retrieval, particularly for text retrieval tasks
[3, 23, 40, 41]. This approach involves creating a set of document
identifiers that represent documents from the original corpus. A gen-
erative model is then trained to generate document identifiers for
an input query. The generated identifiers are subsequently mapped
back to the corresponding documents in the corpus. GR methods
typically utilize an autoregressive (AR) language model to gener-
ate the document identifier as a sequence of words or sub-words
tokens from a predefined target vocabulary. By leveraging high-
quality document identifiers and capturing complex dependencies
between tokens through the autoregressive generation process, GR
has achieved substantial improvements in retrieval performance
in recent years, closing the gap with dense retrieval [3, 22, 23].
Additionally, GR can be complementary to dense retrieval, and
has recently been used in conjunction with typical dense retrieval
techniques for improved diversity [30, 31].

Despite these advancements, deployingGRmodels in low-latency
applications, such as sponsored search, remains a significant chal-
lenge due to the high inference complexity of AR models [21, 30].
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This stems from their sequential token-by-token generation mech-
anism [15]. To address this challenge, our paper explores the use of
non-autoregressive (NAR) language models for GR. These models
significantly reduce inference costs by generating all tokens of the
document identifier simultaneously. However, this parallel gener-
ation limits the model’s ability to capture dependencies among
tokens (words, sub-words) in the output identifier, leading to infe-
rior retrieval performance compared to AR-based GR models. To
enable NAR-based GR to leverage word and sub-word interactions
during generation, we propose expanding the model’s target vocab-
ulary by incorporating multi-word entities and common phrases as
tokens. Intuitively, predicting phrases directly at each position in
the output sequence allows the NARmodel to better understand the
intricate relationships between words and sub-words within each
phrase, potentially enhancing retrieval performance. This forms
the basis of our first research question:

(RQ1)- How does the retrieval accuracy of a NAR-based GR
model (with a target vocabulary containing word/sub-word level
tokens) change when the target vocabulary is expanded to include
phrases from document identifiers as additional tokens?

While a positive answer to the above question will provide an
approach to get high quality retrieval from NAR-based GR, it also
comes at the cost of increased inference latency. While generat-
ing phrases at output instead of solely words or sub-words leads
to shorter output sequences, predicting the most likely tokens at
each of these output positions becomes computationally demand-
ing leading to much higher overall latency. Consequently, to make
NAR-based GR truly viable for latency-sensitive applications such
as sponsored search, we need to develop efficient inference methods
that can select the top tokens from the enlarged vocabulary more
efficiently. This leads us to our second research question:

(RQ2)-How can we reduce the inference latency of a NAR-based
GR model with a target vocabulary comprising of millions of tokens
without compromising its retrieval accuracy?

In this work, we make progress on both these questions. Our
key contributions are outlined below.

1.1 Our Contributions
(1) We present PIXNAR (Phrase-Indexed eXtreme vocabulary

for non-Autoregressive Retrieval), a novel approach to NAR-
based GR. By leveraging a vast target vocabulary encompass-
ing phrases within document identifiers, PIXNAR achieves
superior retrieval quality compared to conventional NAR-
based GR models. Notably, PIXNAR uses a vocabulary size
of 5 million tokens, the largest among models seen in liter-
ature. Through novel training and inference optimizations,
PIXNAR effectively mitigates the computational burden as-
sociated with its large vocabulary. This allows for efficient
retrieval of relevant documents during the inference process.
The architecture of PIXNAR is presented in Figure 1. A com-
prehensive explanation of each component can be found in
Section 4.

(2) We conducted comprehensive experiments on two widely-
used text retrieval benchmarks, MS MARCO [2] and Natural

Questions (NQ) [19]. Our results demonstrate PIXNAR’s
significant performance gains: a relative improvement of
24.0% in MRR@10 on MSMARCO and a 23.2% increase in
Hits@5 on NQ, compared to standard NAR-based retrieval
models while maintaining similar inference latency. These
findings underscore PIXNAR’s effectiveness in enhancing
retrieval quality for various text retrieval tasks.

(3) Further, online A/B testing on a large commercial search en-
gine show that PIXNAR improves overall revenue by 1.00%
and 1.29% for English and non-english queries, respectively.
These findings validate PIXNAR’s practical value in improv-
ing user engagement and driving business outcomes.

2 Related Work
Generative retrieval: GR is an emerging paradigm in informa-
tion retrieval that formulates retrieval as a generation task. A key
distinction among different GR methods lies in their approach to
represent documents. Some methods directly generate the full text
of the document, particularly for short documents like keywords
[24, 29, 34]. Others opt for more concise representations, such as nu-
meric IDs [27, 35, 40–42, 44], document titles [5, 6], sub-strings [3],
pseudo queries [39], or a combination of these descriptors [22, 23].
GR models generally use either numeric IDs or word-based docu-
ment identifiers; when they use word-based identifiers, they can
leverage pretrained language models. Despite showcasing promis-
ing results, existing GR approaches have high inference latency
and computational cost due their reliance on AR language models,
presenting a significant challenge for their real-world adoption.

Non-autoregressive Models: Recent works have explored NAR
models for various generation tasks, such as machine translation
[15], text summarization [33], and specific retrieval applications
like sponsored search [30, 31]. NAR models aim to accelerate infer-
ence by predicting word or sub-word tokens independently and in
parallel with a single forward pass. However, NAR models struggle
to capture the inherent multimodality in target sequences, where
multiple valid outputs exist for a single input, due to their lack of
target dependency modeling [15]. This often leads to predictions
that mix tokens from multiple valid outputs, resulting in significant
performance degradation. To mitigate this, existing approaches
focus on accurately predicting a single mode rather than modeling
all modes. For instance, some methods use knowledge distillation to
simplify the training data [15, 43], while a few others relax the loss
function [10, 12, 26, 36]. While these approaches are effective for
tasks requiring a single correct output, GR necessitates retrieving
all relevant document identifiers for accurate retrieval and rank-
ing. In this work, we propose an orthogonal approach to improve
NAR models for retrieval by directly predicting phrases instead of
sub-words. This reduces the number of independent predictions
required in NARs, leading to improved retrieval performance.

Efficient Softmax: The softmax operation, crucial for generating
probability distributions over target vocabularies in language mod-
els, presents a significant computational bottleneck, particularly
for large vocabularies. Existing approaches address this through
techniques such as low-rank approximation of classifier weights
[7, 37], clustering of classifier weights or hidden states to pre-select
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target tokens [8, 14]. However, these methods remain computation-
ally expensive for NAR models which perform multiple softmax
operations within a single forward pass. In contrast, we introduce
a novel method that utilizes a dedicated shortlist embedding to
efficiently narrow down target tokens for the entire query, thereby
significantly reducing latency and maintaining strong retrieval
performance.

Large Vocabulary: Recent work has highlighted the benefits of
large sub-word vocabularies for encoder models, particularly in
multilingual settings [25]. Non-parametric language models, which
predict outputs from an open vocabulary of n-grams and phrases
using their dense embeddings, have also gained traction for tasks
like question answering and text continuation [4, 20, 28]. While
our work shares the goal of expanding vocabulary size with non-
parametric models, we directly learn classifier weights for an ex-
tended target vocabulary within a non-autoregressive framework.

3 Preliminaries
Notation:We let Q to be a set of queries and X to be a finite set
of text documents (called the document corpus). Following prior
work [3, 22, 23], we use document identifiers (docids), 𝑑 ∈ D,
to represent documents. Specifically, we leverage pseudo-queries
generated by pre-trained language models as docids. We denote the
set {𝑚, . . . , 𝑛} by [𝑚,𝑛], for non-negative integers𝑚 < 𝑛. We use P
(with or without subscripts) to denote probability distributions and
the exact distribution is made clear at the time of use. We define
arg top𝑘𝑥∈𝑋 𝑓 (𝑥) to be a set of 𝑘 elements in set 𝑋 such that no
other element in 𝑋 has a functional value greater than that of any
element in this set.

AR models generate a docid 𝑑 token by token, with each token
depending on the previously generated ones. Let 𝑠 be the length
of the output sequence to be generated, AR models select top to-
kens at each position 𝑡 ∈ [𝑠] based on the conditional distribution
P(. | 𝑑<𝑡 , 𝑞, 𝜃 ). Here 𝑑<𝑡 is the sequence of tokens generated so
far (i.e. till the (𝑡 − 1)𝑡ℎ position), 𝑞 is the input query and 𝜃 rep-
resents the model parameters. This sequential generation process
introduces significant latency, especially when retrieving hundreds
of documents requiring large beam sizes or long sequence lengths.

NARModels generate all tokens of the docid in parallel and there-
fore lead to faster retrieval than AR models. These models assume
conditional independence among target tokens, i.e., P(𝑑 | 𝑞, 𝜃 ) =∏𝑛

𝑡=1 P𝑡 (𝑑𝑡 | 𝑞, 𝜃 ) and so for each position 𝑡 ∈ [𝑠], they select
the top tokens based on the conditional probability distribution
P(. | 𝑞, 𝜃 ). This simplification enables efficient inference but comes
at a cost. Previous studies in various applications, including ma-
chine translation [15, 16], have demonstrated that the assumption
of conditional independence rarely holds for real-world data. Conse-
quently, NARmodels often struggle to capture crucial dependencies
between target tokens, leading to a substantial performance degra-
dation compared to their autoregressive counterparts. In our pro-
posed work described in Section 4, we develop a technique that can
overcome this quality degradation by adding phrase level tokens
(within docids) and designing novel training/inference mechanisms
that can still benefit from the parallel generation mode of NAR.

4 Proposed Work: PIXNAR
The core idea behind PIXNAR is to scale up the target vocabulary
of NAR models by including phrases from docids. We explain the
methodology for constructing this expanded vocabulary in Section
4.1. To enable efficient inference with a larger vocabulary, PIXNAR
constructs a small number of token subsets from the target vo-
cabulary during training. At inference time, PIXNAR selects and
combines relevant subsets to create a concise shortlist of candidate
tokens. For each output position, PIXNAR only re-ranks tokens
among this shortlisted subset to predict the top tokens. Finally,
these top tokens at different positions are combined using trie con-
strained beam search to generate the docids. Sections 4.3 and 4.4
provide the complete details of the PIXNAR pipeline, including the
novel training and inference mechanisms. Figure 1 illustrates the
different components of PIXNAR through a concrete example.

4.1 Vocabulary
Our objective is to develop a target tokenizer and vocabulary with
the following key features: (i) Efficient Encoding: The vocabulary
should minimize the number of bits required to encode docids,
resulting in shorter target sequences, (ii) Token Frequency: Ensure
that each token appears with sufficient frequency in the docid
set to support effective training of the language model weights,
and (iii) Linguistic Structure: Incorporate common phrases while
maintaining word boundaries.

While Byte-Pair Encoding (BPE) is a widely-used method for
creating vocabularies, it often involves pre-tokenization that splits
sentences by spaces and punctuation marks. This approach, used in
models like Llama and GPT, typically results in vocabularies limited
to words and sub-words, which, as demonstrated in Section 5.4,
perform significantly worse than phrase-based vocabularies. Modi-
fying the pre-tokenization heuristic to avoid splitting on spaces can
lead to tokens that mix characters from different words. Similarly,
unigram tokenization faces issues when spaces are not used as
delimiters, producing tokens that span parts of multiple words.

To address these challenges, we employ a tokenization algorithm
[11] that considers word boundaries and other crucial heuristics
to construct a phrase-based vocabulary, effectively overcoming
the limitations of traditional methods. Please refer to Appendix
C for additional details. A crucial feature of our vocabulary is its
scale. In this study, we construct a vocabulary comprising 5 million
tokens, which, to our knowledge, is the largest among the models
referenced in the literature. The integration of phrase-level tokens
significantly increases the variety of token options, allowing for
substantial expansion of the vocabulary.

4.2 Non-autoregressive Generative Retrieval
Overview: Reviewing the entire retrieval process is helpful for un-
derstanding the challenges faced at inference and how the proposed
solution addresses them.

(1) Obtain hidden states. Pass the query through the trans-
former layers to obtain hidden states.

(2) Compute token probabilities. Use the language modeling
head to calculate token probabilities at each position.

(3) Identify top tokens. Identify the top 𝑏 tokens and their
probabilities at each position.
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Figure 1: PIXNAR inference pipeline: The query is first encoded by a Transformer to produce shortlist embedding 𝑥0 and token
embeddings {𝑥1, · · · , 𝑥𝑠 }. The shortlist embedding 𝑥0 is used to identify 𝑘 vocabulary clusters {𝑐𝑖 }𝑘𝑖=1. The union of these clusters,
𝑊𝑆 , is then re-ranked at each position using the corresponding token embeddings, producing a set of ranked candidate tokens
(𝑊 1

𝑆
...𝑊 𝑠

𝑆
) with their probability scores. The docids are predicted from these tokens via constrained beam search.

(4) Generate document identifiers. Perform trie-constrained
beam search to generate document identifiers.

(5) Rank the documents. Rank the documents based on scores
derived from the generated document identifiers.

After adding a special [CLS] token to the query 𝑞 and passing
it through the transformer layers, we obtain a sequence of embed-
dings known as hidden states: 𝑥0 (𝑞), 𝑥1 (𝑞), · · · , 𝑥𝑠 (𝑞) ∈ R𝑑 , where
𝑠 is the sequence length and 𝑑 is the hidden size. For simplicity,
we omit 𝑞 when only a single query is considered. For each token
𝑢 ∈ 𝑉 , the corresponding token vector in the language modeling
head is𝑤𝑢 ∈ R𝑑 . At position 𝑡 ∈ [𝑠], the probability of token 𝑣 is:

P𝑡 (𝑣 | 𝑞) =
exp

(
𝑥⊤𝑡 𝑤𝑣

)∑
𝑢∈𝑉 exp

(
𝑥⊤𝑡 𝑤𝑢

) =
exp

(
𝑥⊤𝑡 𝑤𝑣

)
𝑍𝑡

,

where 𝑍𝑡 is the normalization factor. Once token probabilities are
obtained at each position, the top 𝑏 tokens are identified:

𝑆𝑡 = arg top𝑏
𝑢∈𝑉

P𝑡 (𝑢 | 𝑞).

The top 𝑏 tokens and their probabilities are then used by the
decoding algorithm (refer to Appendix A) to generate document
identifiers. The trie-constrained beam search produces a list of po-
tential document identifiers. The score for each document identifier
𝑑 is the length-normalized sum of the log probabilities of its tokens.
The length normalization factor depends on the document identifier
length 𝑙 and hyperparameters 𝐴, 𝑎, and 𝑏. The score is calculated

as follows:

score(𝑑, 𝑞) =
( 𝑎

𝑏 + 𝑙

)𝐴
·

𝑙∑︁
𝑡=1

logP𝑡 (𝑑𝑡 | 𝑞) .

LetD𝑝 denote the set of generated document identifiers mapping
to document 𝑝 , and letX𝑑 denote the set of documents that identifier
𝑑 maps to. The score for document 𝑝 is then given by:

score(𝑝, 𝑞) =
∑︁

𝑑∈D𝑝

score(𝑑, 𝑞) · 1
|X𝑑 |

.

Challenges: Steps 2 and 3 are computationally expensive when
dealing with large vocabularies. In Step 2, computing the normal-
ization factor 𝑍𝑡 requires the inner product of the hidden state 𝑥𝑡
with each token vector in the vocabulary. Step 3 involves searching
for the most probable tokens within a vocabulary-sized space at
each position. In PIXNAR, the vocabulary size reaches 5 million
tokens, which is orders of magnitude larger than that of a typical
language model. At this scale, even a single decoding step can be
prohibitively slow and costly. To handle this increased vocabulary
size, it is essential to significantly reduce inference costs.

4.3 PIXNAR Inference
PIXNAR attempts to speed up inference by making it faster to
compute the token probabilities, and by narrowing the search space
when identifying high probability tokens at each position. This is
achieved by means of two key strategies set during training. (1)
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Using self normalization [13] [9], we encourage the normalization
factor 𝑍𝑡 to approach 1 for all hidden states and (2) using a specially
designed shortlist embedding, we generate a small vocabulary subset
𝑊𝑆 (orders ofmagnitude smaller than the full vocabulary) to identify
the top 𝑏 tokens at each position.

This leads to the following estimates for the probability distribu-
tion P𝑡 (·|𝑞) and for the set of the top 𝑏 tokens 𝑆𝑡 :

P̃𝑡 (𝑣 |𝑞) = exp
(
𝑥𝑇𝑡 𝑤𝑣

)
, (1)

𝑆𝑡 = arg top𝑏
𝑢∈𝑊𝑆

P𝑡 (𝑢 |𝑞) . (2)

Notice that we compute a single shortlist𝑊𝑆 for all positions. If we
were to directly adopt a method to identify a subset of the vocab-
ulary for computing Softmax [1][8] and the top 𝑏 tokens at each
position, it would be necessary to compute multiple shortlists - one
for each position. This unified approach is particularly beneficial
for NAR models, allowing for a single shortlist to be used across
multiple positions. The shortlist is generated at the query level
rather than individually at each token position.

The shortlist 𝑊𝑆 is derived from the shortlist embedding 𝑥0,
which, due to the training process, has a higher affinity with tokens
relevant to the query. Rather than searching the entire vocabulary
for the top 𝑏 tokens at each position, we can use this shortlist:

arg top 𝑟
𝑢∈𝑉

⟨𝑥0,𝑤𝑢⟩,

for an appropriate value of hyperparameter 𝑟 . However, this would
still have a linear dependence on vocabulary size.

To tackle this issue, we draw inspiration from prior research
that leverages query-side similarities [1, 8]. If a shortlist embedding
closely resembles a vector 𝑐 , it’s likely that the relevant tokens will
also be similar. In the shortlist embedding space, we maintain a
set of𝑚 learned vectors, denoted as 𝑐1, 𝑐2, · · · , 𝑐𝑚 ∈ R𝑑 . For each
vector, the 𝑟 most relevant tokens are precomputed:

𝑊𝑖 = arg top 𝑟
𝑢∈𝑉

⟨𝑐𝑖 ,𝑤𝑢⟩.

The top 𝑘 vectors most similar to 𝑥0 are selected:

Top-k vectors := arg top𝑘
𝑖∈[𝑚]

⟨𝑐𝑖 , 𝑥0⟩.

Assuming the selected vectors are 𝑐1, 𝑐2, · · · , 𝑐𝑘 , the final shortlist
is the union of their relevant token subsets:

𝑊𝑆 =𝑊1 ∪𝑊2 ∪ · · · ∪𝑊𝑘 .

The maximum size of this union is 𝑟𝑘 , where 𝑟 is the number of to-
kens per vector and 𝑘 is the number of selected vectors. By carefully
choosing the hyperparameters, we can ensure that 𝑟𝑘 ≪ |𝑉 |.

At each position, the tokens in𝑊𝑆 are reranked using the efficient
estimates of P𝑡 (· | 𝑞) (see Equation 1). This results in ordered sets
𝑊 𝑡

𝑆
for each 𝑡 ∈ [𝑠], and the top 𝑏 tokens in𝑊 𝑡

𝑆
comprise 𝑆𝑡 (see

Equation 2). The final document identifiers are generated using
permutation decoding, which employs constrained beam search on
trie data structures representing document identifiers from D as
token sequences from the target vocabulary 𝑉 .

4.4 PIXNAR Training
The training objectives of PIXNAR are designed to enable the non-
autoregressive generation of document identifiers while minimizing
estimation errors in both the probability distribution and the set
of top tokens. Specifically, we aim to minimize the errors |P𝑡 (𝑣 |
𝑞) − P̃𝑡 (𝑣 | 𝑞) | and |𝑆𝑡 \ 𝑆𝑡 |. We train PIXNAR using a dataset
of query-docid pairs (𝑞1, 𝑑1), . . . , (𝑞𝑁 , 𝑑𝑁 ). The training process is
divided into two stages.
Stage 1: The first stage focuses on training the language model
to generate entire sequences non-autoregressively and to produce
a shortlist embedding. We minimize a loss function ℓ (𝜃 ) to learn
the vector 𝜃 , which consists of the hidden parameters from the
transformer layers and the token parameter vectors 𝑤𝑢 , where
𝑢 ∈ 𝑉 . Our loss ℓ (𝜃 ) comprises three components:

1. Cross-Entropy Loss: The first term, ℓ1 (𝜃 ), is the standard cross-
entropy loss between the Softmax predictions at each 𝑡 ∈ [1] and
the actual docid sequence in the training data:

ℓ1 (𝜃 ) = −
𝑁∑︁
𝑖=1

𝑠∑︁
𝑡=1

log
[
P𝑡 (𝑑𝑡𝑖 | 𝑞𝑖 )

]
.

2. Self-Normalization Loss: The second term, ℓ2 (𝜃 ), encourages
the normalization factor 𝑍𝑡 to approach 1 for all hidden states. If
this condition holds, |P𝑡 (𝑣 | 𝑞) − P̃𝑡 (𝑣 | 𝑞) | = 0. After minimizing
this loss [9][13], we can use the probability estimates P̃𝑡 (𝑣 | 𝑞) =
exp(𝑥⊤𝑡 𝑤𝑣) instead of P𝑡 (𝑣 | 𝑞).

ℓ2 (𝜃 ) =
𝑁∑︁
𝑖=1

𝑠∑︁
𝑡=1

log2
[ ∑︁
𝑣∈𝑉

exp
(
𝑥𝑡 (𝑞𝑖 )⊤𝑤𝑣

) ]
=

𝑁∑︁
𝑖=1

𝑠∑︁
𝑡=1

log2 𝑍𝑡 (𝑞𝑖 ) .

3. Shortlist Embedding Loss: The third term, ℓ3 (𝜃 ), evaluates
how well 𝑥0 (𝑞) can predict the tokens in the output docid. This loss
term helps ensure the shortlist embedding summarizes the entire
query effectively:

ℓ3 (𝜃 ) = −
𝑁∑︁
𝑖=1

𝑠∑︁
𝑡=1

log
[
P0 (𝑑𝑡𝑖 | 𝑞𝑖 )

]
.

The overall loss function is then:

ℓ (𝜃 ) = ℓ1 (𝜃 ) + 𝜆2ℓ2 (𝜃 ) + 𝜆3ℓ3 (𝜃 ),
where 𝜆2 and 𝜆3 are hyperparameters to be tuned.
Stage 2: After minimizing ℓ (𝜃 ), we proceed to learn the vectors
𝑐1, . . . , 𝑐𝑚 as described earlier. For each training pair (𝑞𝑖 , 𝑑𝑖 ), let
𝑒𝑖 ∈ [𝑚] be the index of the vector 𝑐𝑒𝑖 that has the highest inner
product with the shortlist embedding 𝑥0 (𝑞𝑖 ):

𝑒𝑖 = arg max
𝑗∈[𝑚]

⟨𝑥0 (𝑞𝑖 ), 𝑐 𝑗 ⟩.

We then minimize the loss function ℓ′ (𝑐1, . . . , 𝑐𝑚), which com-
putes the cross-entropy loss between the Softmax distributions P𝑐𝑒𝑖
and the docid sequence 𝑑𝑖 :

ℓ′ (𝑐1, . . . , 𝑐𝑚) = −
𝑁∑︁
𝑖=1

𝑠∑︁
𝑡=1

log
[
P𝑐𝑒𝑖 (𝑑

𝑡
𝑖 )
]
.

Intuitively, this objective aims to maximize the likelihood of the
tokens present in the docid 𝑑𝑖 for the vector 𝑐𝑒𝑖 that best aligns
with 𝑥0 (𝑞𝑖 ). This ensures that the set𝑊𝑒𝑖 (defined earlier in 4.3)
has a high probability of containing the tokens in 𝑑𝑖 .
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In the PIXNAR pipeline, we identify the top 𝑘 vectors that have
the highest inner product with 𝑥0 (𝑞𝑖 ), rather than just the most
aligned vector 𝑐𝑒𝑖 . This improves the likelihood of the tokens in
𝑑𝑖 being present in𝑊0 (𝑞), as it is a union of the token sets corre-
sponding to these 𝑘 vectors.

To initialize the vectors 𝑐1, . . . , 𝑐𝑚 , we compute the shortlist
embeddings for a large number of queries and apply spherical k-
means clustering. The centroids of the resulting clusters are then
used to initialize the vectors for subsequent training.

5 Experiments & Results
In this section, we evaluate our proposed PIXNAR method in three
different experimental settings. First, we benchmark PIXNAR against
leading GR approaches, including AR and NAR methods. Next, we
perform a component-wise ablation study on PIXNAR to examine
the impact of each component on retrieval performance and model
latency. We also compare our novel inference pipeline (Section 4.3)
with inference optimization methods from the literature. Finally,
we assess the effectiveness of PIXNAR in a real-world application,
focusing on sponsored search.

5.1 Experimental Setup
We evaluate PIXNAR on two types of datasets: (i) public datasets
designed for passage retrieval tasks, and (ii) a proprietary dataset
used for sponsored search applications. Below, we describe both:
Public Datasets: We use two prominent datasets to evaluate PIX-
NAR and other GR methods: MS MARCO [2] and Natural Ques-
tions (NQ) [19]. The MS MARCO dataset, derived from Bing search
queries, provides a large collection of real-world queries and their
corresponding passages from relevant web documents. NQ contains
real user queries from Google Search that are linked to relevant
Wikipedia articles, emphasizing text retrieval for answering in-
tricate information needs. For both these datasets, we follow the
preprocessing approach of [23] and utilize pseudo queries generated
from passages as docids for PIXNAR.
Proprietary Dataset: We further evaluate PIXNAR in the context
of sponsored search, where the objective is to retrieve relevant ads
for user queries. We utilize advertiser bid keywords as docids for
ads. We perform offline evaluations on SponsoredSearch-1B, a large-
scale dataset of query-keyword pairs mined from the logs of a large
commercial search engine. This dataset includes approximately 1.7
billion query-keyword pairs, with 70 million unique queries and 56
million unique keywords. The test set consists of 1 million queries,
with a retrieval set of 1 billion keywords.
Metrics & Baselines: Following prior work [22, 23], we evaluate
all models using MRR@k and Recall@k for the MS MARCO dataset,
and Hits@k for NQ. For the SponsoredSearch-1B dataset, we use
Precision@K as the evaluation metric. Additionally, we measure
inference latency with a batch size of 1 on a Nvidia T4 GPU. We
compare PIXNAR with several AR baselines, including DSI [40],
NCI [41], SEAL [3], MINDER [23], and LTRGR [22]. We report
retrieval results from the respective papers and obtain inference
latency by running the official code. For NAR baselines, we include
CLOVERv2 [30] and replicate their method on our datasets due to
the absence of reported numbers and official code for these datasets.
Complete implementation details are provided in Appendix 7.

5.2 Results
We present the results of PIXNAR and various GR baselines on
the MS MARCO dataset in columns 4-7 of Table 1. We observe
several key findings from this comparison. First, CLOVERv2 signifi-
cantly outperforms AR baselines like SEAL, NCI, and DSI, while also
offering substantial improvements in inference latency. This high-
lights CLOVERv2 as a strong NAR baseline. However, CLOVERv2
falls short when compared to more recent AR models, particularly
MINDER and LTRGR. For instance, CLOVERv2’s recall at 100 is
lower than that of MINDER by 11.8 absolute points. Next, our pro-
posed PIXNAR model with a 5M target vocabulary outperforms
the strong CLOVERv2 baseline across all metrics, showing approx-
imately 20-30% relative improvements. This strongly supports our
hypothesis that increasing the target vocabulary of NARmodels can
significantly imrpove retrieval performance. Moreover, PIXNAR
exceeds the performance of MINDER in every metric, achieving a
22.5% improvement in MRR at 10, while also achieving substantial
speedups in inference latency. Notably, PIXNAR achieves this per-
formance without utilizing multiple types of docids like MINDER
(titles, n-grams, pseudo queries) and relies solely on pseudo queries.
Additionally, PIXNAR closely rivals LTRGR, lagging by only 1.5
absolute points in MRR@10 (a 5.8% relative difference), despite not
using a complex two-stage training with a passage-level loss.

The results on the NQ dataset are presented in the last three
columns of Table 1. Here, the baseline CLOVERv2 NAR model
significantly trails behind AR models like SEAL, MINDER, and
LTRGR. For example, CLOVERv2 exhibits a relative gap of 16.3%
with respect to LTRGR on recall at 100. Similar to MS MARCO, PIX-
NAR substantially outperforms CLOVERv2 on all metrics, yielding
around 13-23% gainswhilemaintaining significant latency speedups
over ARmodels. Importantly, PIXNAR reduces the relative gap with
LTRGR from 16.3% to 5.1%. These results demonstrate the effective-
ness of PIXNAR in leveraging large vocabularies in NAR models to
achieve substantially better retrieval performance than standard
NAR models while retaining their latency benefits.

5.3 Qualitative Analysis
To gain deeper insights into PIXNAR’s superior performance com-
pared to smaller-vocabularyNARmodels like CLOVERv2, we present
qualitative examples in Table 2. PIXNAR’s tokenizer effectively cap-
tures multi-word entities like locations (e.g., "des moines iowa")
and common phrases (e.g., "average temp", "what’s the weather
like in") as single tokens. Consequently, the weights in the lan-
guage modelling head of PIXNAR can learn representations for
these multi-word entities and phrases from training data, capturing
their semantic meaning. In contrast, standard NAR models like
CLOVERv2 tend to break down words representing single concepts
into multiple tokens (e.g., "des moines iowa" is fragmented into
four tokens: "des", "mo", "ines", "iowa"). This hinders the language
modeling head from learning meaningful representations for these
concepts. Moreover, representing common phrases like "what’s
the weather like in" allows PIXNAR to make fewer independent
predictions in parallel, reducing the target output sequence length.
Specifically, the mean and 99th percentile target sequence length de-
creases from 10.98 to 4.05 and from 18 to 9 in PIXNAR compared to
CLOVERv2. This reduction in target tokens simplifies the model’s
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Models
GPU

Latency
MS MARCO Natural Questions

@5 @20 @100 M@10 @5 @20 @100

AR

DSI [32, 40] - - - - 17.3 28.3 47.3 65.5
NCI [41] - - - - 9.1 - - -

SEAL-LM [3] 84.3x - - - - 40.5 60.2 73.1
SEAL-LM+FM [3] 84.3x - - - - 43.9 65.8 81.1

SEAL [3] 84.3x 19.8 35.3 57.2 12.7 61.3 76.2 86.3
MINDER [23] 94.1x 29.5 53.5 78.7 18.6 65.8 78.3 86.7
LTRGR [22] 94.1x 40.2 64.5 85.2 25.5 68.8 80.3 87.1

NAR
CLOVERv2 [30] 1.0x 29.2 47.7 66.9 18.3 49.6 63.4 72.9
PIXNAR (Ours) 1.2x 38.7 61.0 80.9 24.0 61.1 74.1 82.7
% improvement - 32.7% 27.9% 20.9% 31.0% 23.2% 16.9% 13.4%

Table 1: Performance and inference latency on MS MARCO and NQ. We report Recall@5, 20, 100, MRR@10 (MS MARCO) and
Hits@5, 20, 100 (NQ), with inference latency relative to CLOVERv2. "-" denotes unreported results.

Query PIXNAR CLOVERv2

average temperatures des moines iowa

1. average temp des moines iowa 1. average temperature
2. what’s the average temperature in des moines iowa 2. what temperature
3. weather in des moines iowa fahrenheit 3. what is des mo-ines
4. what’s the weather like in des moines 4. what is des

supernova boost shoes

1. adidas supernova boost running shoes 1. adidas ultraboost
2. adidas supernova running shoes 2. adidas boost
3. adidas boost running shoes 3. adidas sneakers
4. supernova boost adidas running shoes 4. adidas ultra boost

premier league tickets arsenal

1. arsenal tickets premier league 1. arsenal tickets
2. arsenal fc premier league 2. arsenal fc tickets
3. liverpool arsenal premier league 3. arsenal tickets match
4. adidas ultra boost 4. premier league football

Table 2: Examples from PIXNAR (5M vocab) and CLOVERv2 (128K vocab) on an MS MARCO dev query and two sponsored
search queries. Underlined spans indicate target tokenizer tokens.

prediction task, leading to improved retrieval performance. Inter-
estingly, despite shorter target sequence lengths, PIXNAR tends to
predict longer outputs with more words, as each token represents
multiple words. This addresses a common issue with NAR mod-
els, namely their tendency to generate short outputs [17, 30]. We
provide further analysis in Appendix 7.

5.4 Ablations
Our PIXNAR model integrates three primary components: (i) a
vocabulary and tokenizer that incorporate phrases in addition to
words, (ii) an expanded vocabulary size of 5M tokens, and (iii) an
efficient inference pipeline to accelerate NAR inference. To analyze
each component’s impact, we conducted detailed ablation studies:

Phrase-enhanced Vocabulary: We first investigated the effec-
tiveness of PIXNAR’s vocabulary construction strategy (detailed
in Section 4.1), focusing on the inclusion of phrases. To isolate this
effect, we fixed the vocabulary size to 128K, equivalent to that of

Tokenizer M@10 R@5 R@20 R@100
DeBERTa 18.3 29.2 47.7 66.9
BPE 18.7 29.8 48.5 67.4
Unigram 19.0 30.5 49.7 68.7
Phrase-based 21.6 34.7 56.0 77.5

Table 3: Retrieval performance of different tokenizers on MS
MARCO (vocabulary size of 128K)

DeBERTa-v3, which was used to initialize the encoder. We com-
pared the retrieval performance on the MS MARCO dataset using
the original DeBERTa BPE tokenizer, a custom sub-word BPE, a sub-
word Unigram, and our phrase-based tokenizer, all trained on the
MS MARCO docid set. Table 3 presents the retrieval performance
for the different tokenizers. We observed that a custom-tailored BPE
tokenizer performs marginally better than the original DeBERTa
tokenizer. Further, the Unigram tokenizer outperforms the BPE by
approximately 1.9% in MRR@10 and Recall@100, in relative terms.
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Vocab
Size

MS MARCO Natural Questions
@5 @20 @100 M@10 @5 @20 @100

128K 34.7 56.0 77.5 21.6 56.7 71.6 80.7
500K 34.9 56.9 78.6 21.7 57.8 72.7 81.4
800K 35.2 57.5 79.2 21.9 58.2 73.0 81.2
1M 35.7 58.4 79.6 22.5 58.5 73.0 82.0
5M 38.5 61.0 81.6 24.2 61.2 74.8 83.5

Table 4: Scaling vocabulary improves NAR retrieval: We re-
port the Recall@k and Hits@k for MSMARCO and NQ

Method
MSMARCO Latency (ms)

MRR@10 R@100 Mean 99
Full Softmax 24.2 81.6 47.9 48.3

SVD-Softmax [38] 22.8 78.6 13.7 14.3
HiRE-Softmax [37] 24.0 81.3 12.7 13.2

Centroid Clustering [1] 21.7 78.2 14.2 17.4
Fast Vocab [1] 22.6 79.6 9.5 16.7
PIXNAR (Ours) 24.0 80.9 4.5 5.0

Table 5: Retrieval performance and inference latency (in ms)
for PIXNAR and other softmax optimization methods

Most notably, our phrase-based tokenizer substantially outperforms
the best baseline (Unigram tokenizer), with a relative improvement
of 13.7% in MRR@10 (19.0% to 21.6%) and 12.6% in Recall@100
(68.7% to 77.5%). These results clearly demonstrate the benefits of
extending beyondwords to include phrases in the target vocabulary.

Vocabulary Scaling: Next, we analyze the impact of increasing
the target vocabulary size in NAR models, addressingRQ1 posed in
Section 1. For this study, we utilized the phrase-based tokenizer and
varied the vocabulary size from 128K to 5 million tokens. We used
the full softmax operation without any approximation to observe
the raw effect of scaling. As shown in Table 4, there is a consistent
increase in retrieval performance as the vocabulary size increases
across both MS MARCO and NQ datasets. Notably, the improve-
ment persists even when the vocabulary size exceeds 1 million
tokens. For instance, when increasing the vocabulary size from 1
million to 5 million tokens, Recall@5 on the MS MARCO dataset
improves by 7.7% (from 35.7 to 38.5). These findings highlight the
clear advantages of scaling up the vocabulary size in NAR models
in terms of retrieval performance.

Efficient PIXNAR Inference: Scaling vocabulary size introduces
computational challenges due to the expensive softmax operation.
Table 5 compares PIXNAR’s inference pipeline (Section 4.3) against
established techniques: (i) low-rank approximation methods: SVD-
Softmax [38], HiRE-Softmax [37]) and (ii) clustering-based methods:
Fast Vocabulary Projection [7] and it’s variant Centroid Projection.
While offering modest speedups, low-rank approximations like
HiRE-softmax still result in significantly higher inference latency
(3.4x slower than the 128k vocabulary CLOVERv2 baseline) due
to their linear complexity with vocabulary size. Clustering-based

Model Vocabulary M@10 R@5 R@20 R@100
NQ-MS-FT NQ 28.2% 29.5% 49.9% 71.3%
MS-T MSMARCO 24.2% 38.5% 61.0% 81.6%

Table 6: Retrieval performance on MSMARCO with differ-
ent training and vocabulary configurations. NQ-MS-FT: NQ
trained, MSMARCO finetuned; MS-T: MSMARCO trained.

Model Vocabulary Acc@5 Acc@20 Acc@100
MS-NQ-FT MSMARCO 57.4% 71.9% 81.3%
NQ-T NQ 61.2% 74.8% 83.5%

Table 7: Retrieval performance on NQ with different train-
ing and vocabulary configurations. MS-NQ-FT: MSMARCO
trained, NQ finetuned; NQ-T: NQ trained.

Component # Parameters
Embedding Matrix 98M
Transformer Layers 85M
Language Modeling Head 3.84B
Table 8: Model Component Parameters

methods like Fast Vocabulary Projection offer further speedups in
mean latency but remain 2.5x slower than CLOVERv2. In contrast,
PIXNAR achieves superior performance, delivering a 10.6x speedup
over full softmax and a 2.1x speedup over Fast Vocabulary Projec-
tion while maintaining comparable retrieval performance to full
softmax (within 0.82% in MRR@10 and 0.85% in Recall@100). This
translates to a latency only 21% higher than the CLOVERv2 model
which has a 39x smaller vocabulary. These results highlight the ef-
fectiveness of our tailored softmax approximation, which efficiently
predicts shortlist tokens in NAR models.

5.5 Scalability
Increasing vocabulary size poses challenges for both memory and
computational efficiency during training and inference. This section
outlines how our approach addresses these challenges.
Memory Costs: Larger vocabularies increase memory demands.
In our 5M-token model with a hidden size of 768, total parame-
ters reach 3.84B, exceeding those of the transformer layers and
embedding matrix. With bf16 quantization, the model fits within
8GB of memory, well within the capacity of 16GB GPUs like T4s
and V100s. For larger vocabularies, techniques such as low-rank or
sparse matrices may be necessary. The breakdown of parameters
by component is given in Table 8.
Computational Costs: Different components in the model have
different computational footprints. The main inference bottleneck
occurs at the language modeling head, where projecting hidden
states onto large vocabularies can drastically slow down retrieval.
Our inference algorithm uses a shortlist of up to 100,000 token
vectors (only 2% of the vocabulary), reducing computational load
and scaling to very large vocabularies.

Training costs scale with vocabulary size, particularly when
computing the normalization factor for SoftMax Cross-Entropy.
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Language Δ Revenue Δ Clicks Δ QBR Δ Defect
English 1.00% 0.27% 0.01% -0.02%
Non-english 1.29% 0.43% -0.26% 0.01%

Table 9: Results of online A/B tests in sponsored search. Gray
color indicates non-significant delta (p-value > 0.01)

0.00 %

0.20 %

0.40 %

0.60 %

0.80 %

1.00 %

1 2 3 4 5 6 7 8 9 10

P
e

rc
en

ta
ge

 C
h

an
ge

Decile

Query Coverage
(Non-English)

Query Coverage
(English)

Ad Impressions
(Non-English)

Ad Impressions
(English)

Figure 2: Change in query coverage and Ad impression for
different deciles in online A/B tests on sponsored search

Although training with vocabularies up to 5M tokens is feasible,
larger vocabularies will demand more efficient techniques such as
negative sampling or hardware optimizations.

5.6 Generalization
While constructing a task-specific vocabulary optimized for each
dataset can lead to improved performance, building a generalizable
vocabulary that works well across multiple datasets is valuable for
many practical applications. To assess generalization, we conducted
cross-dataset experiments where PIXNAR was first trained on one
dataset and then finetuned on the other. Specifically, we trained the
model on MS MARCO and finetuned it on NQ, and vice versa. The
results of these experiments are presented in Tables 6 and 7.

The MSMARCO-trained model finetuned on NQ achieved nearly
the same performance as the NQ-specific model, with only a 2%
gap in Accuracy@100. Similarly, the NQ-trained model finetuned
on MS MARCO demonstrated strong performance, with a 10%
gap compared to the model trained specifically on MS MARCO.
These results indicate that the PIXNAR vocabulary exhibits strong
generalizability across different datasets, providing robust retrieval
performance without the need for dataset-specific vocabularies.

5.7 Application to Sponsored Search
To demonstrate the effectiveness of PIXNAR in real-world scenarios,
we conducted extensive experiments in sponsored search, where the
task is to retrieve the most relevant advertisements for user queries.
In this application, ads are treated as documents, and the keywords
bid by advertisers serve as the docids. We first evaluated PIXNAR
on the SponsoredSearch-1B dataset, where it significantly outper-
formed CLOVERv2, increasing P@100 from 23.5% to 29.1% (relative
improvement of 23.7%). Further, we deployed PIXNAR on a large-
scale commercial search engine and conducted A/B testing against

an ensemble of leading proprietary dense retrieval and generative
retrieval algorithms. As shown in Table 9, PIXNAR improved over-
all revenue by 1.00% for English queries and 1.29% for non-English
queries, accompanied by a statistically significant increase in clicks.
Additionally, we observed no statistically significant change in the
Quick Back Rate (QBR), which denotes the percentage of ad clicks
where users quickly returned to the search page. This indicates that
the revenue increase resulted from an increase in high-quality clicks
on ads that users found relevant. Moreover, we did not observe any
statistically significant change in the Ad Defect Rate, as measured
by offline relevance models, indicating that the ads displayed were
indeed relevant. To further analyze the gains, we grouped queries
into frequency-based buckets, referred to as deciles in sponsored
search. Decile 1 contains highly frequent queries, while decile 10
consists of a large number of rare queries. For each decile, we mea-
sured two metrics: (i) query coverage, the fraction of queries for
which any sponsored content was shown, and (ii) ad impressions,
the total number of ads displayed for queries. As shown in Figure 2,
PIXNAR increased both query coverage and ad impressions across
all deciles, with particularly strong gains on tail queries, which are
often longer and more ambiguous. These results indicate that PIX-
NAR was able to serve more relevant sponsored content to users,
especially for tail queries that are typically harder to cater.

6 Conclusion & Future Work
In this work, we introduced PIXNAR, a novel NAR-based retrieval
approach that incorporates phrase-level tokens within an expanded
target vocabulary. Our experiments showed that PIXNAR narrows
the performance gap with state-of-the-art AR methods while main-
taining the efficiency of NAR models. This speed advantage makes
PIXNAR a strong candidate for latency-sensitive applications such
as real-time search and recommendation systems. The promising
results open exciting avenues for further research. While a 5M vo-
cabulary size is already significant, further expansion could yield
even more substantial performance improvements. This will re-
quire not only efficient inference optimizations methods but also
necessitates efficient training approximations along with data aug-
mentation strategies. Additionally, exploring better techniques for
vocabulary construction to further improve PIXNAR’s effectiveness
could be another direction for future work.
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Figure 3: Trie-constrained beam forces the text generated
by the model to always lie within the set of valid document
identifiers.

A Constrained Beam Search
In generative retrieval, language models are forced to generate only
within a closed set of document identifiers. For text generation
models, this is typically achieved by incorporating a data structure
such as a trie or an FM index into the decoding process.

The beam search decoding algorithm is commonly used to select
multiple likely sequences of tokens. At each step, it maintains a
set of prefixes and searches through the vocabulary to find the
most likely next tokens for each prefix. The expanded prefixes are
then pruned down to the beam size. The computational cost of
beam search depends on the vocabulary size and the number of
decoding steps. Given PIXNAR’s massive vocabulary, the standard
beam search would be prohibitively expensive. To address this, we
modify the algorithm to accept a list of preselected tokens at each
position, removing the dependency on the vocabulary size. If this
is efficiently computed, beam search becomes more feasible.

In our work, we use a trie constructed from all unique document
identifiers to guide the language model’s generation. When consid-
ering whether a token can extend a prefix, the trie ensures that a
document identifier can be reached from the expanded prefix. Fig-
ure 3 provides an illustration. Trie-constrained beam search accepts
the top-k tokens and their probabilities at each position to generate
a set of document identifiers.

Further, non-autoregressive models don’t need to generate to-
kens from left to right, as token probabilities at each position are
computed simultaneously. This allows us to modify the beam search
order to generate document identifiers, provided that there also
exists a trie constructed in that order to ensure all generations fall
within the set of document identifiers. We perform beam search in
multiple orders when decoding non-autoregressive models. This
technique is referred to as ‘permutation decoding’ in this paper.
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Figure 4: PIXNAR-5M generates longer sentences on average
compared to CLOVERv2 (NQ dataset)

B Hyperparameter Study
This section details our hyperparameter study, focusing on the
impact of key parameters on the performance and efficiency of
our proposed PIXNAR model. We evaluated the influence of the
shortlistingmodule’s hyperparameters (𝑘 ,𝑚, 𝑟 ) and the beam search
parameters (beam size and length normalization factor) on retrieval
accuracy and inference latency. These experiments were conducted
on the MS MARCO dataset using an A100 GPU.

B.1 Shortlisting Module Hyperparameters
We investigated the impact of the shortlisting module’s hyperpa-
rameters: 𝑘 (number of subsets),𝑚 (number of tokens per subset),
and 𝑟 (vocabulary subset size). Table 10 presents the results of this
analysis. As expected, increasing 𝑟 or 𝑘 generally improves retrieval
accuracy, but also leads to a slight increase in inference time. No-
tably, increasing𝑚 improves retrieval performance while slightly
reducing inference time. This is likely due to the selection of more
relevant subsets during the shortlisting process. The latency re-
mained relatively stable across these parameters as the number
of parameters used during inference is a small fraction of the LM
head.

B.2 Beam Search Hyperparameters
We further analyzed the effect of beam size and the length nor-
malization factor (𝐴) on retrieval performance. Table 11 shows
the results of this analysis. We observed that increasing the beam
size yields diminishing returns in terms of retrieval accuracy. The
length normalization factor, 𝐴, requires careful tuning to balance
the model’s bias towards generating shorter or longer document
identifiers. We found that a value of 2.5 for 𝐴 provided the best
trade-off between accuracy and the length of the generated identi-
fiers.

C Vocabulary Construction
We adopt a two-stage approach: candidate selection followed by
vocabulary construction, as proposed in TokenMonster [11]. Ini-
tially, we generate a set of potential token candidates, including
words, sub-words and phrases, by considering all possible character
substrings up to a specified maximum length. We then filter these
substrings based on criteria such as adherence to word boundaries
and consistency in character types (letters, numbers, punctuation,
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Parameter Value MRR@10 R@100

m
256 22.2% 79.0%
1024 23.8% 80.8%
4096 24.0% 80.9%

r
1000 18.1% 71.4%
10000 23.7% 80.5%
20000 24.0% 80.9%

k
1 23.3% 79.8%
3 23.9% 80.6%
5 24.0% 80.9%

Table 10: Ablation study on parameters m, r, and k

Parameter Value MRR@10 R@100

Beam Size

50 4.1% 24.4%
100 23.5% 78.9%
200 23.9% 79.9%
300 24.0% 80.9%

Length Norm
0 1.8% 16.8%
2.5 24.0% 80.9%
5 22.2% 79.6%

Table 11: Ablation study on Beam Size and Length Norm

Metric CLOVERv2 128K 500K 1M 5M
Mean 10.98 5.56 4.78 4.46 4.05
99th 18 12 11 10 9

Table 12: Mean and 99th percentile sequence lengths for dif-
ferent vocabulary sizes. The number of tokens needed to
tokenize a document identifier nearly halves.

etc.). Only tokens that exceed a minimum occurrence threshold are
retained as potential candidates. In the second stage, we iteratively
refine the candidate set to construct an optimal vocabulary of a
specified size. We generate multiple test vocabularies from the pool
of candidate tokens. Each test vocabulary is then used to tokenize
the dataset, and a scoring system evaluates the efficiency of each
token based on the total number of characters it compresses in the
docid set. Tokens that perform poorly are removed, and the process
is repeated until the desired vocabulary size is reached. Since we
use the approach outlined in [11], we refer the reader to [11] for
further implementation details.

D Implementation Details
1.ModelDetails:We initialize PIXNAR and the baseline CLOVERv2
model with the pretrained DeBERTa encoder [18]. We use the
"microsoft/deberta-v3-base" checkpoint available on HuggingFace.
For CLOVERv2, we use the provided 128K DeBERTa vocabulary for
both the input and target. The language modeling head for PIXNAR
must necessarily be initialized from scratch.
2. Document Identifiers:We employ the pseudo queries used in
MINDER as our document identifiers. The total number of unique
pseudo queries is around 80 million for the Natural Questions
Wikipedia passages, and about 170 million for the MS MARCO

passages. In addition to using pseudo queries as our document
identifiers, we also augment our training dataset by adding these
pseudo queries as questions that map to other pseudo queries asked
of the same passage. For each passage, we sample up to 20 pseudo
queries and add them to the training dataset.
3. Training Details: All models were trained with a learning rate
of 5 × 10−5, 1000 warmup steps, and an effective batch size of 6400.
Hyperparameters 𝜆3 (self-normalization loss scaling factor) and
𝜆2 (shortlist loss scaling factor) were set to 1.0 and 0.25. We used
the AdamW optimizer with a linear decay learning rate scheduler
with warmup. Models were trained for 5 epochs on the MSMARCO
dataset and 10 epochs on the Natural Questions dataset. We used
HuggingFace Trainer with a DeepSpeed wrapper for training.
4. Compute:We trained models using a 5M target vocabulary on
8 Nvidia H100 GPUs and models of all other vocabulary sizes on 16
AMD Mi200 GPUs. Inference experiments were all carried out on
an NVIDIA Tesla T4 GPU. Training time was approximately 3 days
on 8xH100s for the 5M vocabulary.
5. Selected Hyperparameters:We set the shortlisting module hy-
perparameters𝑚, 𝑟, 𝑘 to 4096, 20000 and 5 respectively. The length
normalization hyperparameters 𝐴, 𝑎, 𝑏 are set to 2.5, 6, 5.
6. Vocabulary Construction: For PIXNAR, we construct a tar-
get vocabulary of 5 million tokens using the method described in
Section 4.1. We construct separate vocabularies for MS MARCO
and NQ datasets, on the full set of document identifiers for each
dataset. TokenMonster binaries were used to construct the vocabu-
lary. Vocabularies were built using phrases, words, and sub-words
that met frequency and length criteria, pruned iteratively based on
token scoring. More details are in TokenMonster. The "min-occur"
parameter was set to 20 for constructing the PIXNAR vocabulary,
ensuring that candidate phrases occur at least 20 times in the docu-
ment identifier corpus. While constructing the vocabulary, we use
"strict" mode, in order to prevent minor variations of a phrase from
receiving multiple tokens in the vocabulary.
7. Sequence Lengths andTarget Sentence Lengths:NARmodels
often generate document identifiers that are sometimes too brief to
convey significant semantics. By contrast, PIXNAR generates longer
and more relevant target sentences, by generating phrases directly
instead of subwords and words. Figure 4 presents the aggregated
results that shows that PIXNAR (5M vocabulary) halves sequence
lengths. The phrase-based tokens in PIXNAR have another benefit:
they enable the generation of longer and relevant target sentences
using fewer tokens, thereby enhancing generation quality. Table ??
illustrates how the sequence lengths of the target tokens decrease
as vocabulary sizes increase. Notably, the sequence lengths for the
128K vocabulary generated by PIXNAR’s vocabulary construction
algorithm results in fewer token sequence lengths compared to
CLOVERv2 which uses DeBERTa tokenization.
8. Trie Constrained BeamSearch:Weuse a trie structure to guide
beam search for efficient keyword generation. The trie is built on
unique document identifiers (docids), with pruning at each step to
maintain the most probable paths and ensure valid docids. We use
an optimized Marisa trie for beam search. Setting a log threshold of
-12.0 led to more efficient search. Details on permutation decoding
are available in the repository.
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